Search results for "Continuous spatial automaton"
showing 10 items of 15 documents
One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata
2013
We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.
Running time to recognize nonregular languages by 2-way probabilistic automata
1991
R. Freivalds proved that the language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-ɛ. A.G.Greenberg and A.Weiss proved that no 2pfa can recognize this language in expected time \(T(n) = c^\circ{(n)}\). For arbitrary languages C.Dwork and L.Stockmeyer showed somewhat less: if a language L is recognized by a 2pfa in expected time \(T(n) = c^{n^\circ{(1)} }\), then L is regular. First, we improve this theorem replacing the expected time by the time with probability 1-ɛ. On the other hand, time bound by C.Dwork and L.Stockmeyer cannot be improved: for arbitrary k≥2 we exhibit a specific nonregular language that can be recognized by 2…
Quantum Finite One-Counter Automata
1999
In this paper the notion of quantum finite one-counter automata (QF1CA) is introduced. Introduction of the notion is similar to that of the 2-way quantum finite state automata in [1]. The well-formedness conditions for the automata are specified ensuring unitarity of evolution. A special kind of QF1CA, called simple, that satisfies the well-formedness conditions is introduced. That allows specify rules for constructing such automata more naturally and simpler than in general case. Possible models of language recognition by QF1CA are considered. The recognition of some languages by QF1CA is shown and compared with recognition by probabilistic counterparts.
Group Input Machine
2009
We introduce a new type of internal memory for finite automata and real-time automata. Instead of using tapes with a prescribed Euclidean structure (one-dimensional or two-dimensional tapes) we allow arbitrary group structure of the internal memory of the automata.
Extremal minimality conditions on automata
2012
AbstractIn this paper we investigate the minimality problem of DFAs by varying the set of final states. In other words, we are interested on how the choice of the final states can affect the minimality of the automata. The state-pair graph is a useful tool to investigate such a problem. The choice of a set of final states for the automaton A defines a coloring of the closed components of the state-pair graph and the minimality of A corresponds to a property of these colored components. A particular attention is devoted to the analysis of some extremal cases such as, for example, the automata that are minimal for any choice of the subset of final states F from the state set Q of the automato…
Hopcroft's algorithm and tree-like automata
2011
Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees…
Quantum Finite State Automata over Infinite Words
2010
The study of finite state automata working on infinite words was initiated by Buchi [1]. Buchi discovered connection between formulas of the monadic second order logic of infinite sequences (S1S) and ω-regular languages, the class of languages over infinite words accepted by finite state automata. Few years later, Muller proposed an alternative definition of finite automata on infinite words [4]. McNaughton proved that with Muller’s definition, deterministic automata recognize all ω-regular languages [2]. Later, Rabin extended decidability result of Buchi for S1S to the monadic second order of the infinite binary tree (S2S) [5]. Rabin theorem can be used to settle a number of decision probl…
Research of Complex Forms in Cellular Automata by Evolutionary Algorithms
2004
This paper presents an evolutionary approach for the search for new complex cellular automata. Two evolutionary algorithms are used: the first one discovers rules supporting gliders and periodic patterns, and the second one discovers glider guns in cellular automata. An automaton allowing us to simulate AND and NOT gates is discovered. The results are a step toward the general simulation of Boolean circuits by this automaton and show that the evolutionary approach is a promising technic for searching for cellular automata that support universal computation.
Classical automata on promise problems
2015
Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…
Transition Function Complexity of Finite Automata
2011
State complexity of finite automata in some cases gives the same complexity value for automata which intuitively seem to have completely different complexities. In this paper we consider a new measure of descriptional complexity of finite automata -- BC-complexity. Comparison of it with the state complexity is carried out here as well as some interesting minimization properties are discussed. It is shown that minimization of the number of states can lead to a superpolynomial increase of BC-complexity.