Search results for "Continuous spatial automaton"

showing 10 items of 15 documents

One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata

2013

We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.

Discrete mathematicsNested wordDeterministic finite automatonContinuous spatial automatonAutomata theoryQuantum finite automataNondeterministic finite automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMobile automatonMathematics
researchProduct

Running time to recognize nonregular languages by 2-way probabilistic automata

1991

R. Freivalds proved that the language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-ɛ. A.G.Greenberg and A.Weiss proved that no 2pfa can recognize this language in expected time \(T(n) = c^\circ{(n)}\). For arbitrary languages C.Dwork and L.Stockmeyer showed somewhat less: if a language L is recognized by a 2pfa in expected time \(T(n) = c^{n^\circ{(1)} }\), then L is regular. First, we improve this theorem replacing the expected time by the time with probability 1-ɛ. On the other hand, time bound by C.Dwork and L.Stockmeyer cannot be improved: for arbitrary k≥2 we exhibit a specific nonregular language that can be recognized by 2…

CombinatoricsNested wordRegular languageProbabilistic automatonContinuous spatial automatonQuantum finite automataAutomata theoryNondeterministic finite automatonω-automatonMathematics
researchProduct

Quantum Finite One-Counter Automata

1999

In this paper the notion of quantum finite one-counter automata (QF1CA) is introduced. Introduction of the notion is similar to that of the 2-way quantum finite state automata in [1]. The well-formedness conditions for the automata are specified ensuring unitarity of evolution. A special kind of QF1CA, called simple, that satisfies the well-formedness conditions is introduced. That allows specify rules for constructing such automata more naturally and simpler than in general case. Possible models of language recognition by QF1CA are considered. The recognition of some languages by QF1CA is shown and compared with recognition by probabilistic counterparts.

Nested wordTheoretical computer scienceFinite-state machineComputer scienceω-automatonAutomatonMobile automatonDeterministic finite automatonDeterministic automatonContinuous spatial automatonProbabilistic automatonQuantum finite automataAutomata theoryNondeterministic finite automatonQuantum cellular automaton
researchProduct

Group Input Machine

2009

We introduce a new type of internal memory for finite automata and real-time automata. Instead of using tapes with a prescribed Euclidean structure (one-dimensional or two-dimensional tapes) we allow arbitrary group structure of the internal memory of the automata.

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordFinite-state machineω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesTopologyAutomatonMobile automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESContinuous spatial automatonAutomata theoryQuantum finite automataComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Extremal minimality conditions on automata

2012

AbstractIn this paper we investigate the minimality problem of DFAs by varying the set of final states. In other words, we are interested on how the choice of the final states can affect the minimality of the automata. The state-pair graph is a useful tool to investigate such a problem. The choice of a set of final states for the automaton A defines a coloring of the closed components of the state-pair graph and the minimality of A corresponds to a property of these colored components. A particular attention is devoted to the analysis of some extremal cases such as, for example, the automata that are minimal for any choice of the subset of final states F from the state set Q of the automato…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordSettore INF/01 - InformaticaGeneral Computer Sciencestate-pair graph of automataminimality automataTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceMobile automatonCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationContinuous spatial automatonAutomata theoryQuantum finite automataComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Hopcroft's algorithm and tree-like automata

2011

Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees…

Discrete mathematicsNested wordSettore INF/01 - InformaticaGeneral MathematicsAutomata minimizationω-automatonHopcroft's algorithmComputer Science ApplicationsCombinatoricsDeterministic finite automatonDFA minimizationDeterministic automatonContinuous spatial automatonQuantum finite automataAutomata theoryword treesAlgorithmComputer Science::Formal Languages and Automata TheorySoftwareMathematics
researchProduct

Quantum Finite State Automata over Infinite Words

2010

The study of finite state automata working on infinite words was initiated by Buchi [1]. Buchi discovered connection between formulas of the monadic second order logic of infinite sequences (S1S) and ω-regular languages, the class of languages over infinite words accepted by finite state automata. Few years later, Muller proposed an alternative definition of finite automata on infinite words [4]. McNaughton proved that with Muller’s definition, deterministic automata recognize all ω-regular languages [2]. Later, Rabin extended decidability result of Buchi for S1S to the monadic second order of the infinite binary tree (S2S) [5]. Rabin theorem can be used to settle a number of decision probl…

Discrete mathematicsCombinatoricsFinite-state machineDeterministic finite automatonComputer Science::Logic in Computer ScienceContinuous spatial automatonQuantum finite automataAutomata theoryNondeterministic finite automatonω-automatonComputer Science::Formal Languages and Automata TheoryDecidabilityMathematics
researchProduct

Research of Complex Forms in Cellular Automata by Evolutionary Algorithms

2004

This paper presents an evolutionary approach for the search for new complex cellular automata. Two evolutionary algorithms are used: the first one discovers rules supporting gliders and periodic patterns, and the second one discovers glider guns in cellular automata. An automaton allowing us to simulate AND and NOT gates is discovered. The results are a step toward the general simulation of Boolean circuits by this automaton and show that the evolutionary approach is a promising technic for searching for cellular automata that support universal computation.

Block cellular automatonTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESComputer sciencebusiness.industryBoolean circuitComputationGrowCut algorithmContinuous automatonTimed automatonNonlinear Sciences::Cellular Automata and Lattice GasesCellular automatonAutomatonMobile automatonStochastic cellular automatonElementary cellular automatonDeterministic automatonContinuous spatial automatonAutomata theoryArtificial intelligencebusinessComputer Science::Formal Languages and Automata TheoryAsynchronous cellular automatonQuantum cellular automaton
researchProduct

Classical automata on promise problems

2015

Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…

FOS: Computer and information sciencesNested wordTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESUnary operationGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)nondeterministic automataComputer Science - Formal Languages and Automata Theoryω-automatonComputational Complexity (cs.CC)Theoretical Computer ScienceContinuous spatial automatonQuantum finite automataDiscrete Mathematics and Combinatoricsalternating automatapromise problemsMathematicsprobabilistic automataNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonNondeterministic algorithmAlgebra[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Computer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESAutomata theorydescriptional complexityComputer Science::Formal Languages and Automata Theory
researchProduct

Transition Function Complexity of Finite Automata

2011

State complexity of finite automata in some cases gives the same complexity value for automata which intuitively seem to have completely different complexities. In this paper we consider a new measure of descriptional complexity of finite automata -- BC-complexity. Comparison of it with the state complexity is carried out here as well as some interesting minimization properties are discussed. It is shown that minimization of the number of states can lead to a superpolynomial increase of BC-complexity.

Discrete mathematicsAverage-case complexityTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineDFA minimizationContinuous spatial automatonAutomata theoryQuantum finite automataDescriptive complexity theoryω-automatonComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct